Chemistry

Imagine tiny cracks in your patio table healing by themselves, or the first small scratch on your new car disappearing by itself. This and more may be possible with self-healing coatings being developed at the University of Illinois.
The new coatings are designed to better protect materials from the effects of environmental exposure. Applications range from automotive paints and marine varnishes to the thick, rubbery coatings on patio furniture and park benches.
"Starting from our earlier work on self-healing materials at the U. of I., we have now created self-healing coatings…

In developing a model to explain the motion of atoms in a magnetic field, scientists have overcome a decades-old obstacle to understanding a key component of magnetic resonance.
The new understanding may eventually lead to better control of magnetic resonance imaging (MRI) and higher resolution MRI diagnoses.
Collaborators at Ohio State University in Columbus and three institutions in France--the Centre National de la Recherche Scientifique, the Université d'Orléans, and the Université de Lyon--presented their findings in a paper published in the Journal of Chemical Physics.
"This is very…

Sandcastle worms live in intertidal surf, building sturdy tube-shaped homes from bits of sand and shell and their own natural glue. University of Utah bioengineers have made a synthetic version of this seaworthy superglue, and hope it will be used within several years to repair shattered bones in knees, other joints and the face.
"You would glue some of the small pieces together," says Russell Stewart, associate professor of bioengineering and senior author of the study to be published online within a week in the journal Macromolecular Biosciences.
"When you break the top of a bone in a joint…

Research chemists at the University of Warwick have devised a process which covers small particles of polymer with a layer of silica-based nanoparticles and provides a versatile material that can be used to create a range of high performance materials - like self healing paints or even packaging that can be tailored to let precise levels of water, air or both pass in a particular direction.
The research, led by Dr Stefan Bon of University of Warwick's Department of Chemistry, has created a “soap free emulsion polymerization process” which makes colloid particles of polymer dispersed in water…

In the future, polymethyl methacrylate (PMMA) could be made from natural raw materials such as sugars, alcohols or fatty acids.
PMMA is a synthetic plastic developed in 1928 and today produced in great quantities. While PMMA is often known colloquially as acrylic glass, as it is mainly used as a shatterproof, lightweight alternative to glass - for example, in protective goggles or vehicle lights. PMMA has many applications, including prosthetics, paints and adhesives.
It is also sold under the brand names "Plexiglas®" (Evonik) and "Altuglas" (Arkema). The plastic is fragile, but very…

Computers are getting smaller and smaller and as hand-held devices like mobile phones and music players get more powerful the race is on to develop memory formats that can satisfy the ever-growing demand for information storage on those tiny formats.
Current memory technologies fall into three separate groups: dynamic random access memory (DRAM), which is the cheapest method; static random access memory (SRAM), which is the fastest memory — but both DRAM and SRAM require an external power supply to retain data; and flash memory, which is non-volatile — it does not need a power supply to…

Chemistry researchers at The University of Warwick and the John Innes Centre, have found a novel signalling molecule that could be a key that will open up hundreds of new antibiotics unlocking them from the DNA of the Streptomyces family of bacteria.
With bacterial resistance growing researchers are keen to uncover as many new antibiotics as possible. Some of the Streptomyces bacteria are already used industrially to produce current antibiotics and researchers have developed approaches to find and exploit new pathways for antibiotic production in the genome of the Streptomyces family. For…

I recently attended an NSF workshop on eChemistry: New Models for Scholarly Communication in Chemistry in Washington (Oct 23-24, 2008). The group consisted of about a dozen members, including publishers, social scientists, librarians and chemists. For background, this was the mandate:
Many scholarly communities have embraced new web-based models for disseminating the results of their research. These models include open access to formal publications and "gray literature", access to primary data and the tools to manipulate and visualize that data, interactive peer review, and integration with…

The first-ever glimpse of nanoscale catalysts in action could lead to improved pollution control and fuel cell technologies. Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory observed catalysts restructuring themselves in response to various gases swirling around them, like a chameleon changing its color to match its surroundings.
Using a state-of-the-art spectroscopy system at Berkeley Lab's Advanced Light Source, the team watched, for the first time, as nanoparticles composed of two catalytic metals changed their composition in the presence of different…

Scientists in Spain are reporting an advance toward a new method for determining the purity of heroin that could save lives by allowing investigators to quickly identify impure and more toxic forms of the drug being sold on the street. Unlike conventional tests, it does not destroy the original drug sample, according to their report.
In the new study, Salvador Garrigues and colleagues point out that the purity of heroin can vary widely, since pushers often mix it with chalk, flour, or other "cutting agents." Because heroin users do not know the exact purity of the drug, they are more at risk…