Mitochondrial Enzyme DHODH, Ferroptosis, And Maybe A New Cancer Treatment Strategy

Preclinical findings suggest that targeting the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) can restore ferroptosis-driven cell death, pointing to new therapeutic strategies that may be used to induce ferroptosis and inhibit tumor growth.Ferroptosis is a form of controlled cell death triggered by the toxic accumulation of lipid peroxides in the cell. Because lipid peroxides are generated through normal metabolic activities, cells also have mechanisms in place to defend against ferroptosis. Glutathione peroxidase 4 (GPX4) is one of the key defense mechanisms identified to date. 

Preclinical findings suggest that targeting the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) can restore ferroptosis-driven cell death, pointing to new therapeutic strategies that may be used to induce ferroptosis and inhibit tumor growth.

Ferroptosis is a form of controlled cell death triggered by the toxic accumulation of lipid peroxides in the cell. Because lipid peroxides are generated through normal metabolic activities, cells also have mechanisms in place to defend against ferroptosis. Glutathione peroxidase 4 (GPX4) is one of the key defense mechanisms identified to date. 

In this study, the researchers used GPX4 inhibitors to block its activity and to identify new defense mechanisms. Metabolic analyses pointed them to DHODH, a mitochondrial enzyme that normally is involved in the pyrimidine biosynthesis pathway.

In cells with low GPX4 expression, loss of DHODH activity led to the accumulation of lipid peroxides in mitochondria and the activation of ferroptosis. By contrast, cells with high GPX4 expression were able to continue blocking ferroptosis activity in the absence of DHODH. The findings suggest that DHODH and GPX4 work as redundant defense mechanisms in the mitochondria to prevent ferroptosis.

The researchers further clarified DHODH's role in regulating ferroptosis and then investigated the therapeutic potential of targeting this enzyme in cancer cells. Using extensive preclinical models, they evaluated the DHODH inhibitor brequinar, which has been tested in multiple clinical trials for other indications.

In GPX4-low cancers, brequinar effectively induced ferroptosis and suppressed tumor growth, but the effects were not seen in GPX4-high cancers. However, the combination of brequinar and sulfasalazine, an FDA-approved ferroptosis inducer, resulted in a synergistic effect to overcome high GPX4 expression and to block tumor growth.

Old NID
254479
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…