Space Travel: Pioneer Anomaly Solved?

The 100 Year Spaceship Symposium, an international event advocating human expansion into other star systems, has some crucial hurdles to overcome. Basically, interstellar travel will depend upon extremely precise measurements of every factor involved in the mission, which isn't possible yet.  But a University of Missouri researcher thinks he has found the solution to a puzzle that has stumped astrophysicists for decades.

The 100 Year Spaceship Symposium, an international event advocating human expansion into other star systems, has some crucial hurdles to overcome. Basically, interstellar travel will depend upon extremely precise measurements of every factor involved in the mission, which isn't possible yet.  But a University of Missouri researcher thinks he has found the solution to a puzzle that has stumped astrophysicists for decades.

The Pioneer spacecraft, two probes launched into space in the 1970s, seemed to violate the Newtonian law of gravity by decelerating anomalously as they traveled, but there was nothing in physics to explain why this happened. Sergei Kopeikin, professor of physics and astronomy, says he has a theoretical explanation: "My study suggests that this so-called Pioneer anomaly was not anything strange. The confusion can be explained by the effect of the expansion of the universe on the movement of photons that make up light and radio waves."

Beams of radio waves were sent to and bounced off the Pioneer spacecraft to measure the probes' movement. The time it took for the photons to complete a round trip was used to calculate the spacecrafts' distance and speed. Kopeikin suggests that the photons move faster than expected from the Newtonian theory thus causing the appearance of deceleration, though the craft were actually traveling at the correct speed predicted by the theory. The universe is constantly expanding and this alters the Earth-based observations of the photons bouncing off the spacecraft, causing the Pioneer probes to appear to slow down.

"Previous research has focused on mechanical explanations for the Pioneer anomaly, such as the recoil of heat from the craft's electrical generators pushing the craft backwards," Kopeikin said. "However that only explains 15 to 20 percent of the observed deceleration, whereas it is the equation for photons that explains the remaining 80-85 percent."

Physicists must be careful when dealing with propagation of light in the presence of the expansion of space, noted Kopeikin, since it is affected by forces that are irrelevant in other equations. For example, the expansion of the universe affects photons, but doesn't influence the motion of planets and electrons in atoms.

"Having accurate measurements of the physical parameters of the universe help us form a basis to make plans for interstellar exploration," Kopeikin said. "Discerning the effect of the expansion of the universe on light is important to the fundamental understanding of space and time. The present study is part of a larger on-going research project that may influence the future of physics."

“Celestial ephemerides in an expanding universe” was published in the journal Physical Review D.

Old NID
95032
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…