Switching Off Cancer Cell Genes

A new study identifies how genes are silenced in cancer cells through distinct changes in the density of nucleosomes within the cells. The findings will enable researchers to explore new therapies to switch the genes back on and may lead to novel treatments for human cancers, says study lead author Peter A. Jones, Ph.D., D.Sc., director of the USC/Norris Comprehensive Cancer Center and Distinguished Professor at the Keck School of Medicine of USC. "The study shows for the first time exactly how genes get shut down in cancer cells," Jones says. "It identifies what the target looks like so that new therapies can be designed to turn them back on."

A new study identifies how genes are silenced in cancer cells through distinct changes in the density of nucleosomes within the cells.

The findings will enable researchers to explore new therapies to switch the genes back on and may lead to novel treatments for human cancers, says study lead author Peter A. Jones, Ph.D., D.Sc., director of the USC/Norris Comprehensive Cancer Center and Distinguished Professor at the Keck School of Medicine of USC.

"The study shows for the first time exactly how genes get shut down in cancer cells," Jones says. "It identifies what the target looks like so that new therapies can be designed to turn them back on."

The study showed that silencing of transcription start sites in some cancer cells involves distinct changes in nucleosomal occupancy'or the density of nucleosomes'in the cell. Researchers found that three nucleosomes, almost completely absent from the start site in normal cells, are present in the methylated and silenced promoter, suggesting that epigenetic silencing may be accomplished by the stable placement of nucleosomes into previously vacant positions.

DNA cytosine methylation 'the addition of a group of specific chemicals to a stretch of DNA that can lock or silence a gene' may ultimately lead to silencing by enabling the stable presence of nucleosomes at the start sites of cancer-related genes, the study suggests.

"We believe these findings will contribute to the development of cancer therapies," Jones says. "We were surprised to find how rigid the inactive structure is, and how rapidly it can be dissolved by drug treatment."

The study was supported by a grant from the National Institutes of Health.

Joy C. Lin, Shinwu Jeong, Gangning Liang, Daiya Takai, Merhnaz Fatemi, Yvonne C. Tsai, Gerda Egger, Einav Nili Gal-Yam, Peter A. Jones, "Role of Nucleosomal Occupancy in the Epigenetic Silencing of the MLH1 CpG Island," Cancer Cell, Volume 12; Issue 5, November 2007. DOI: 10.1016/

Old NID
5858
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…