'Smart Dust' Mini-Machines Could Help Us Understand Ocean Currents

Tiny probes packed with instrumentation have been turned loose in a laboratory in France. The marble-sized devices are an important step on the road to long-anticipated miniaturized machines known as smart dust (picture the artificial swarm in Michael Creighton's "Prey," only without the bloodlust). The small and simple machines are being developed to be released in large numbers to collect data about the motion of fluid systems such as ocean currents and atmospheric winds. The two centimeter probes are on the large side for smart dust (typically, miniature machines must fill a volume of a cubic centimeter or less to make the cut), still the probes' abilities are impressive for their size.

Tiny probes packed with instrumentation have been turned loose in a laboratory in France. The marble-sized devices are an important step on the road to long-anticipated miniaturized machines known as smart dust (picture the artificial swarm in Michael Creighton's "Prey," only without the bloodlust). The small and simple machines are being developed to be released in large numbers to collect data about the motion of fluid systems such as ocean currents and atmospheric winds.

The two centimeter probes are on the large side for smart dust (typically, miniature machines must fill a volume of a cubic centimeter or less to make the cut), still the probes' abilities are impressive for their size. They float freely underwater, measure local temperatures down to a millionth of a degree Kelvin, and send it all back wirelessly. Previous devices used for similar measurements had to remain above water or stay in one place.


The path of a smart particle is color-coded to indicate the temperatures it wirelessly reports back during its travels. Credit: Y. Gasteuil, W.L. Shew, M. Gibert, F. Chill'a, B. Castaing and J.-F. Pinton

The team of physicists that made the smart particles at the Université de Lyon used them to track the paths of tiny heat packets that travel through fluids, showing that the packets follow a regular pattern. The researchers are hopeful that the device will teach them more about the motion of particles in turbulent systems, including hurricanes and mixtures of reactive chemicals.

- Y. Gasteuil, W.L. Shew, M. Gibert, F. Chill'a, B. Castaing and J.-F. Pinton, Physical Review Letters

Old NID
5865
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…