Scientists have made an important advance in understanding the genetic processes that give flowers, leaves and plants their bright colours. The knowledge could lead to a range of benefits, including better understanding of the cancer-fighting properties of plant pigments and new, natural food colourings. The research is highlighted in the new issue of Business from the Biotechnology and Biological Sciences Research Council (BBSRC).

The scientists, at the John Innes Centre and Institute of Food Research in Norwich, have pinpointed a key group of enzymes involved in the production of plant pigments. The pigments, called anthocyanins, are what give some plants the vivid colours that they use to attract insects and foraging animals. They also give plants protection against environmental stresses and disease. Hundreds of different anthocyanins exist in nature, all with slightly different chemical compositions. The international research team, supported by BBSRC, identified the genes responsible for the enzymes which chemically modify anthocyanins to alter their properties.

Prof Cathie Martin at the John Innes Centre who co-led the project explains: "Using a new strategy, we conducted biochemical studies on the brassica plant Arabidopsis. We found that a small number of genes responsible for the enzymes that chemically modify anthocyanins were 'switched on' when the plants were making anthocyanins in response to stress.

"When we transferred these genes to a tobacco plant, the colour of the tobacco flowers changed slightly, confirming that these genes, and the enzymes that they produce, were indeed responsible for modifying anthocyanins.

"What's more, these anthocyanins that had been modified by the enzymes were more stable than those that hadn't. This is significant because stabilised anthocyanins could be used as natural food colourants to replace many artificial colours used in various foods. This improved understanding of the genetics of anthocyanins also provides a better platform for studying their antioxidant properties, important in the fight against cancer, cardiovascular disease and age-related degeneration."

- Biotechnology and Biological Sciences Research Council (BBSRC)

Old NID
4506
Categories

Donate

Please donate so science experts can write for the public.

At Science 2.0, scientists are the journalists, with no political bias or editorial control. We can't do it alone so please make a difference.

Donate with PayPal button 
We are a nonprofit science journalism group operating under Section 501(c)(3) of the Internal Revenue Code that's educated over 300 million people.

You can help with a tax-deductible donation today and 100 percent of your gift will go toward our programs, no salaries or offices.

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…