Natural Enemies Increase Evolutionary Stability

A new study explores the role of natural enemies, such as predators and parasites, for mixed mating, a reproductive strategy in which hermaphroditic plants and animals reproduce through both self- and cross-fertilization. The findings highlight the possible evolutionary consequences of these interactions. Mating systems are a complex set of traits that reflect interactions among genetics, population structure, demography, and numerous environmental factors that influence mating success. These traits have profound consequences for genetic variation.

A new study explores the role of natural enemies, such as predators and parasites, for mixed mating, a reproductive strategy in which hermaphroditic plants and animals reproduce through both self- and cross-fertilization. The findings highlight the possible evolutionary consequences of these interactions.

Mating systems are a complex set of traits that reflect interactions among genetics, population structure, demography, and numerous environmental factors that influence mating success. These traits have profound consequences for genetic variation. Plants and animals display a dramatic range of mating systems, including mixed mating.

The mechanism by which enemies are transmitted between individuals is also found to have a significant effect on outcrossing, the process by which new genetic material is introduced into a breeding line. This provides an ideal model for the study of evolution.

The findings show that natural enemies likely play a significant role in the evolutionary stability of a particular reproductive strategy and may influence the mating systems of their “victims” (the plants and animals they affect) by altering interactions between victims and other ecological community members. For example, enemies may alter the availability of mates in a population, which may have direct consequences for victim mating system evolution. Enemies may also influence the expression of traits that are important for mating system evolution, thereby improving the evolutionary stability of mixed mating as a reproductive system.

“Consideration of natural enemies has added a new dimension to our understanding of mating system evolution in both plants and animals,” says Janette A. Steets, lead author of the study. “Although theoretical and empirical evidences are just beginning to accumulate, they largely point to an enemy effect on mating systems and demonstrate that enemies can create dynamics that lead to the evolutionary stability of mixed mating.”

This study is published in Evolution.

Old NID
5288
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…