How Does THC In Marijuana Impact Neural Substrates?

Marijuana and its main psychoactive component, THC, exert a plethora of behavioral and autonomic effects on humans and animals. Some of these effects are the cause of the widespread illicit use of marijuana, while others might be involved in the potential therapeutic use of this drug for the treatment of several neuronal disorders. The great majority of these effects of THC are mediated by cannabinoid receptor type 1 (CB1), which is abundantly expressed in the central nervous system. The exact anatomical and neuronal substrates of each action, however, were previously unknown. Using an advanced genetic approach, Krisztina Monory and colleagues at the Johannes Gutenberg University Mainz discovered that specific neuronal subpopulations mediate the distinct effects of THC.

Marijuana and its main psychoactive component, THC, exert a plethora of behavioral and autonomic effects on humans and animals.

Some of these effects are the cause of the widespread illicit use of marijuana, while others might be involved in the potential therapeutic use of this drug for the treatment of several neuronal disorders. The great majority of these effects of THC are mediated by cannabinoid receptor type 1 (CB1), which is abundantly expressed in the central nervous system. The exact anatomical and neuronal substrates of each action, however, were previously unknown.

Using an advanced genetic approach, Krisztina Monory and colleagues at the Johannes Gutenberg University Mainz discovered that specific neuronal subpopulations mediate the distinct effects of THC.

In their study, the researchers generated mutant mice lacking CB1 expression in defined neuronal subpopulations but not in others. These mice were treated with THC, and typical effects of the drug on motor behavior, pain, and thermal sensation were scored. Their discovery of the neural substrates underlying specific effects of THC could lead to a refined interpretation of the pharmacological actions of cannabinoids. Moreover, these data might provide the rationale for the development of drugs capable of selectively activating CB1 in specific neuronal subpopulations, thereby better exploiting cannabinoids’ potential therapeutic properties.

Citation: Monory K, Blaudzun H, Massa F, Kaiser N, Lemberger T, et al (2007) Genetic dissection of behavioural and autonomic effects of D9-tetrahydrocannabinol in mice. PLoS Biol 5(10): e269.doi:10.1371/journal.pbio.0050269

Old NID
4709
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…