What Recognizes What In Plant Disease Resistance?

Plants have an immune system that resists infection, yet 10% of the world's agricultural production is lost annually to diseases caused by bacteria, fungi, and viruses. Understanding how disease resistance works may help combat this scourge. In a new study published online this week in the open-access journal PLoS Biology, Tessa Burch-Smith, Savithramma Dinesh-Kumar, and colleagues show how one aspect of the plant immune system is defined by the gene-for-gene hypothesis: a plant Resistance (R) gene encodes a protein that specifically recognizes and protects against one pathogen or strain of a pathogen carrying a corresponding Avirulence (Avr) gene. In tobacco and its relatives, the N resistance protein confers resistance to infection by the Tobacco mosaic virus (TMV).

Plants have an immune system that resists infection, yet 10% of the world's agricultural production is lost annually to diseases caused by bacteria, fungi, and viruses. Understanding how disease resistance works may help combat this scourge.

In a new study published online this week in the open-access journal PLoS Biology, Tessa Burch-Smith, Savithramma Dinesh-Kumar, and colleagues show how one aspect of the plant immune system is defined by the gene-for-gene hypothesis: a plant Resistance (R) gene encodes a protein that specifically recognizes and protects against one pathogen or strain of a pathogen carrying a corresponding Avirulence (Avr) gene.

In tobacco and its relatives, the N resistance protein confers resistance to infection by the Tobacco mosaic virus (TMV). The authors used N, and the TMV Avirulence gene, p50, to investigate the mechanism of gene-for-gene resistance.

Contrary to current models, which propose that recognition of resistance genes occurs solely through their leucine-rich repeat domain, the authors show that association is mediated by a completely different region on N's Toll-interleukin-1 receptor homology domain, which is structurally similar to animal innate immunity molecules. These findings provide novel insights into how R proteins recognize pathogen Avr proteins and should help in long-term efforts to enhance crop yield.

Citation: Burch-Smith TM, Schiff M, Caplan JL, Tsao J, Czymmek K, et al. (2007) A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol 5(3): e68. doi:10.1371/journal.pbio.0050068.

This article has been adapted from a news release issued by Public Library of Science.

Old NID
360
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…