Hydrogen fuel cell sealing technology breakthrough

Solid Oxide Fuel Cells (SOFC) have attracted major interest from research and development communities as an alternative source of power. In these fuel cells electricity is generated via electro-chemical reactions using hydrogen based gas and oxygen as a fuel and oxidant, respectively. Sealing these units is a critical technical issue that needs further work before they can be put into widespread commercial use. In particular the system chosen must exhibit good gas tightness, adhesion with adjoining components (electrolyte and connector), chemical compatibility, matching coefficient of thermal expansion and electrical insulation. Ceramic seal technology recently developed may be the solution.

Solid Oxide Fuel Cells (SOFC) have attracted major interest from research and development communities as an alternative source of power. In these fuel cells electricity is generated via electro-chemical reactions using hydrogen based gas and oxygen as a fuel and oxidant, respectively.

Sealing these units is a critical technical issue that needs further work before they can be put into widespread commercial use. In particular the system chosen must exhibit good gas tightness, adhesion with adjoining components (electrolyte and connector), chemical compatibility, matching coefficient of thermal expansion and electrical insulation. Ceramic seal technology recently developed may be the solution.

Recent work from researchers, Apichart Jinnapat, Sirithan Jiamsirilert and Sumittra Charojrochkul from Chulalongkorn University and Thailand's National Metals and Materials Technology Center, and published under AZojomo* (OARS)**, looked at ceramic adhesives and ceramic-glass composites. These materials were examined in terms of their chemical and thermal compatibilities with respect to potential use in SOFCs.

The researchers found that all materials tested displayed good compatibility with the yttria-stabilised zirconia (YSZ) electrolyte and 430 stainless steel interconnector system. In general glass-ceramic composite materials sealed better than ceramic adhesives. Their sealing properties were also found to be superior after being subjected to thermal cycling. The most promising sealing material was a 80/20 Pyrex glass/YSZ composite material which recorded a leakage rate as low as 2.41 x 10 -4 cm 3/min cm.

Read the paper here.

Old NID
2204
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…