A new optical technique by which audio information can be extracted from high-speed video recordings, by using an image-matching process based on vibration from sound waves.

The technique is based on the fact that sound waves are mechanical waves that cause air to vibrate when traveling, the paper notes. That vibration through air can cause vibration of objects located in its traveling path, especially if the objects are lightweight, thin, and flexible, such as a piece of paper. The vibrations, although usually with small amplitudes, can be detected and analyzed algorithmically, and audio reconstructed based on those calculations.

The authors used a subset-based image-correlation approach to detect the motions of points on the surface of an object, capturing target images with a high-speed camera and applying the Gauss-Newton algorithm and a few other measures to achieve very fast and highly accurate image matching. Because the detected vibrations are directly related to sound waves, a simple model was used to reconstruct the original audio information of the sound waves.

While other recent work in the area reports on more sophisticated techniques to compute motion signals, the authors chose a simpler image-matching approach to measure vibration. Because light can travel through air considerably farther than sound and can pass through glass, they anticipate that the technique may find applications such as the passive detection of conversations inside of a building from a far distance. "We are currently improving the technique to increase its accuracy and sensitivity, make the measurements in real-time, and remove interference from other sources," said  Zhaoyang Wang of the Department of Engineering in the Catholic University of America 

"One of the intriguing aspects of the paper is the ability to recover spoken words from a video of objects in the room," said journal Associate Editor Reiner Eschbach, a Research Fellow at Xerox Corp. "The paper shows that the sound creates minute vibrations in objects and that these vibrations ― given the right equipment ― can be picked up from a video signal. This is an interesting foray into a new application space and will, in my view, trigger interesting research in the field,"

 Published in Optical Engineering. Source: SPIE--International Society for Optics and Photonics
Old NID
150494
Categories

Donate

Please donate so science experts can write for the public.

At Science 2.0, scientists are the journalists, with no political bias or editorial control. We can't do it alone so please make a difference.

Donate with PayPal button 
We are a nonprofit science journalism group operating under Section 501(c)(3) of the Internal Revenue Code that's educated over 300 million people.

You can help with a tax-deductible donation today and 100 percent of your gift will go toward our programs, no salaries or offices.

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…