When the activity of individual genes it is longer required, there are two main mechanisms responsible for the “switching off”, mainly DNA methylation and the Polycomb protein complex.

Sometimes, these mechanisms lose their efficiency and some of the genes that should be “switched off” remain active. This, in turn, could lead to uncontrolled cellular proliferation, and tumorigenesis. These mechanisms, present both in lower organisms as well as in mammals, have always been thought to be separated and independent.

The work carried out by researchers of the Differentiation and Cancer Programme, at the Centre for Genomic Regulation (CRG), in Barcelona (Spain), demonstrates the cross-talk between these two gene silencing mechanisms in patients suffering from acute leukemia. The work, led by the ICREA researcher Luciano Di Croce, head of the group Epigenetics and Cancer, at the CRG, performed in collaboration with Kristian Helin’s group, at the Biotech Research and Innovation Centre in Copenhagen (Denmark), and Dr. Nomdedeu’s group, at the Santa Creu and Sant Pau Hospital, in Barcelona, will have important consequences in the development of new anti-tumor therapies.

On the one hand, the study shows a better understanding of the basic mechanisms of gene regulation and, on the other hand, identifies a possible new pathway to reactivate erroneously “switched off” genes in tumors. In 2002, in a study published in Science, Di Croce showed that uncontrolled DNA methylation contributed to tumor progression in its first stages. Less than a year ago, Di Croce’s group described, in another study published in Nature, the biochemical connection between the Polycomb protein complex and the enzymes methylating the DNA (DNA methyltransferases).

In this new study, Di Croce has shown that the two mechanisms are not only interconnected in leukemic cells, but also that one reinforces the other and, more importantly, that one needs the other.

Therefore - and this is one of the most interesting aspects of the investigation - if one of these mechanisms is blocked by specific drugs, the other will also be affected. The results achieved will allow, in the future, identifying new chemical compounds able to block both mechanisms simultaneously and exclusively, without altering other cellular mechanisms. For these reasons, this is one of the new investigations lines recently adopted by the group led by Di Croce.

Source: Villa R, Pasini D, Gutierrez A, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, and Di Croce L. “Role of the Polycomb repressive complex 2 in acute promyelocytic leucemia” Cancer Cell, June 2007

Old NID
2162
Categories

Donate

Please donate so science experts can write for the public.

At Science 2.0, scientists are the journalists, with no political bias or editorial control. We can't do it alone so please make a difference.

Donate with PayPal button 
We are a nonprofit science journalism group operating under Section 501(c)(3) of the Internal Revenue Code that's educated over 300 million people.

You can help with a tax-deductible donation today and 100 percent of your gift will go toward our programs, no salaries or offices.

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…