A new light source based on fiber-optic technology promises to improve the inspection of food, produce, paper, currency, recyclables and other products. New research revealing this technology will be presented at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), being held March 25-29 in Anaheim, Calif.

Currently, industrial processes for inspecting foodstuffs and other items often use "line-scan" cameras, which record images of objects one line at a time, just as fax machines scan documents on a line-by-line basis. Rapid electronic processors then detect whether there are any problems with the items and instruct mechanical actuators (such as air jets) to separate out unsatisfactory items. The problem is current line-scan cameras lack ideal light sources to image objects properly.

Now, Princeton Lightwave of Cranbury, N.J. and OFS Labs (a Somerset, N.J.-based division of Furukawa Electric) have introduced a fiber-optics-based solution, which they will describe in their OFC/NFOEC paper. In their design, a bright light source such as a laser sends light through an optical fiber. Along the length of the fiber is an ultraviolet-light-treated region called a "fiber grating." The grating deflects the light so that it exits perpendicularly to the length of the fiber as a long, expanding rectangle of light. This optical rectangle is then collimated by a cylindrical lens, such that the rectangle illuminates objects of interest at various distances from the source. The bright rectangle allows line scan cameras to sort products at higher speeds with improved accuracy.

The new fiber-based light source combines all the ideal features necessary for accurate and efficient scanning: uniform, intense illumination over a rectangular region; a directional beam that avoids wasting unused light by only illuminating the rectangle; and a "cool" source that does not heat up the objects to be imaged. Currently employed light sources such as tungsten halogen lamps or arrays of light-emitting diodes lack at least one of these features.

According to the researchers, this fiber-based device can be customized for a specific inspection application within 4 to 6 weeks, then manufactured for that application in 16 to 20 weeks.

Meeting Paper: G.E. Carver, K.S. Feder, P.S. Westbrook, "FBG Based Distributed Lighting for Sensing Applications."

Written from a news release by Optical Society of America.

Old NID
748
Categories

Donate

Please donate so science experts can write for the public.

At Science 2.0, scientists are the journalists, with no political bias or editorial control. We can't do it alone so please make a difference.

Donate with PayPal button 
We are a nonprofit science journalism group operating under Section 501(c)(3) of the Internal Revenue Code that's educated over 300 million people.

You can help with a tax-deductible donation today and 100 percent of your gift will go toward our programs, no salaries or offices.

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…