Applied Physics

An international team of scientists led by Scripps Institution of Oceanography at UC San Diego and the Department of Energy's (DOE) Joint Genome Institute has peered into the genetic makeup of two species of phytoplankton, the tiny plants key in global photosynthesis and carbon cycling, and come away with surprising results about evolutionary engineering and new ideas about the role that a poorly understood chemical element may play in the world's oceans.
For several years, Scripps Oceanography's Brian Palenik and his collaborators, including scientists from France, Belgium and Germany, have…

By giving ordinary adult mice a drug - a synthetic designed to mimic fat - Salk Institute scientist Dr. Ronald M. Evans is now able to chemically switch on PPAR-d, the master regulator that controls the ability of cells to burn fat. Even when the mice are not active, turning on the chemical switch activates the same fat-burning process that occurs during exercise. The resulting shift in energy balance (calories in, calories burned) makes the mice resistant to weight gain on a high fat diet.
The hope, Dr. Evans told scientists attending Experimental Biology 2007 in Washington, DC, is that…

With gold nanoparticles, DNA and some smart chemistry as their tools, scientists at Northwestern University have developed a simple "litmus test" for mercury that eventually could be used for on-the-spot environmental monitoring of bodies of water, such as rivers, streams, lakes and oceans, to evaluate their safety as food and drinking water sources.
An article detailing the colorimetric screening technology and its success detecting mercury will be published online April 27 by Angewandte Chemie, the prestigious European journal of applied chemistry.
Methyl mercury, a neurotoxin that is…
An international has developed a prototype of the first fully integrated prosthetic arm that can be controlled naturally and provide sensory feedback, and allows for eight degrees of Freedom -- a level of control far beyond the current state of the art for prosthetic limbs.
Jesse Sullivan, a former high-power lineman, lost both arms in 2001 after being shocked on the job. Here, he demonstrates the capabilities of the Proto 1 prosthetic arm system during clinical tests at the Rehabilitation Institute of Chicago. Credit: Rehabilitation Institute of Chicago
Proto 1, developed for the Defense…
A new technique for creating films of barium titanate (BaTiO3) nanoparticles in a polymer matrix could allow fabrication of improved capacitors able to store twice as much energy as existing devices. The improved capacitors could be used in consumer devices such as cellular telephones – and in defense applications requiring both high energy storage and rapid current discharge.
Scanning electron micrographs of barium titanate (BaTiO3) nanocomposites with polycarbonate (left, top and bottom) and Viton (right, top and bottom) polymer matrices. The images show the dramatic improvement in film…
Tiny pores within plant cells may hold promise for green fuels.
Researchers have discovered that particles from cornstalks undergo previously unknown structural changes when processed to produce ethanol, an insight they said will help establish a viable method for large-scale production of ethanol from plant matter.
A magnified image of a cornstalk particle shows the many tiny pores that pretreatment -- a phase of the ethanol production process -- opens up. These pores create more surface area for subsequent reactions to take place and give enzymes better access to cellulose, the source for…

Engineers at Washington University in St. Louis have developed a unique photocatlytic cell that splits water to produce hydrogen and oxygen in water using sunlight and the power of a nanostructured catalyst.
The discovery provides a new low cost and efficient option for hydrogen production and can be used for a variety of distributed energy applications.
This method sandwiches three semiconductor films into a compact structure on the nanoscale range, is smaller, more efficient and more stable than present photocatalytic methods which require multiple steps and can take from several hours to…
An electrical circuit that should carry enough power to produce the long-sought goal of controlled high-yield nuclear fusion and, equally important, do it every 10 seconds, has undergone extensive preliminary experiments and computer simulations at Sandia National Laboratories' Z machine facility.
Z, when it fires, is already the largest producer of X-rays on Earth and has been used to produce fusion neutrons. But rapid bursts are necessary for future generating plants to produce electrical power from sea water. This had not been thought achievable till now.
From Siberia, not Area 51:…

Termites know how to digest cellulose, but the human process of producing ethanol from cellulose is slow and expensive. The bottleneck is the rate at which the cellulose enzyme breaks down cellulose into sugars, which are then fermented into ethanol.
To help unlock the cellulose bottleneck, a team of scientists has conducted molecular simulations at the San Diego Supercomputer Center (SDSC), based at UC San Diego. By using "virtual molecules," they have discovered key steps in the intricate dance in which the enzyme acts as a molecular machine -- attaching to bundles of cellulose, pulling…

Parents-to-be might soon don 3-D glasses in the ultrasound lab to see their developing fetuses in the womb "in living 3-D, just like at the IMAX movies," according to researchers at Duke University's Pratt School of Engineering.
The same Duke team that first developed real-time, three-dimensional ultrasound imaging says it has now modified the commercial version of the scanner to produce an even more realistic perception of depth. Paired images seem to pop out of the screen when viewed with the special glasses.
The researchers created an updated version of the image-viewing software found…