What If Sand Flowed Like Water?

How do grains flow out of an emptying silo? And what about sugar poured out by a pastry chef? Researchers at Centre de Physique Moléculaire Optique et Hertzienne (CPMOH) of CNRS/ Université Bordeaux 1 have just demonstrated that even without an attractive force between grains in flowing sand, they have a cohesion similar to that of liquids. These results were published in Physical Review Letters. The surface of a liquid is similar to an elastic membrane under tension, which causes things like the pressure on the interior of soap bubbles. This “surface tension” is due to cohesion forces between molecules in the liquid.

How do grains flow out of an emptying silo? And what about sugar poured out by a pastry chef?

Researchers at Centre de Physique Moléculaire Optique et Hertzienne (CPMOH) of CNRS/ Université Bordeaux 1 have just demonstrated that even without an attractive force between grains in flowing sand, they have a cohesion similar to that of liquids. These results were published in Physical Review Letters.

The surface of a liquid is similar to an elastic membrane under tension, which causes things like the pressure on the interior of soap bubbles. This “surface tension” is due to cohesion forces between molecules in the liquid.

Like liquids, grains can flow, but there is no attraction between the grains to trigger cohesion. However, by studying the waves that form and propagate on the surface of flowing sand, the physicists have observed telltale signs of cohesion. Like the very small ripples that form on the surface of water, these waves point to the existence of a “taut elastic skin” on the surface of volumes of grain. This “skin” on flowing grain is its surface tension.

By measuring wave propagation speed, the researchers have shown that this cohesion effect is a result of a decrease in air pressure between flowing grains.

Therefore, when a mass of grains flows, there is a depressed area at the middle of the flow, which pulls straying grains back towards the mass. These results should improve our understanding of the details of what happens in grain flows –materials which are common, but not yet well understood.

Article: Y. Amarouchene, J-F Boudet and H. Kellay, “Capillarylike Fluctuations at the Interface of Falling Granular Jets” Phys. Rev published online May 27, 2008, and in print May 30.

Old NID
29395
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…