Using The Avalanche Effect In Electrons Could Mean High Output Solar Cells

Solar cells provide great opportunities for future large-scale electricity generation. However, there are currently significant limitations, such as the relatively low output of most solar cells (typically fifteen percent) and high manufacturing costs. One possible improvement could derive from a new type of solar cell made of semiconducting nanocrystals (crystals with dimensions in the nanometre size range). In conventional solar cells, one photon (light particle) can release precisely one electron. The creation of these free electrons ensures that the solar cell works and can provide power. The more electrons released, the higher the output of the solar cell. In some semiconducting nanocrystals, however, one photon can release two or three electrons, hence the term avalanche effect.

Solar cells provide great opportunities for future large-scale electricity generation. However, there are currently significant limitations, such as the relatively low output of most solar cells (typically fifteen percent) and high manufacturing costs.

One possible improvement could derive from a new type of solar cell made of semiconducting nanocrystals (crystals with dimensions in the nanometre size range). In conventional solar cells, one photon (light particle) can release precisely one electron. The creation of these free electrons ensures that the solar cell works and can provide power. The more electrons released, the higher the output of the solar cell.

In some semiconducting nanocrystals, however, one photon can release two or three electrons, hence the term avalanche effect.


Graphic visualisation of avalanche effect

This could theoretically lead to a maximum output of 44 percent in a solar cell comprising the correct semiconducting nanocrystals. Moreover, these solar cells can be manufactured relatively cheaply.
The avalanche effect was first measured by researchers at the Los Alamos National Laboratories in 2004. Since then, the scientific world has raised doubts about the value of these measurements. Does the avalanche effect really exist or not?

Within the Joint Solar Programme TU Delft’s Prof. Laurens Siebbeles has now demonstrated that the avalanche effect does indeed occur in lead selenide (PbSe) nanocrystals. It has been established, however, that the effect in this material is smaller than previously assumed. Siebbeles’ results are more reliable than those of other scientists thanks to more careful and more detailed measurement using ultra-fast laser methods.

Siebbeles believes that this research paves the way for further unravelling the secrets of the avalanche effect.

Article: M. Tuan Trinh, Arjan J. Houtepen, Juleon M. Schins, Tobias Hanrath, Jorge Piris, Walter Knulst, Albert P. L. M. Goossens, and Laurens D. A. Siebbeles, In Spite of Recent Doubts Carrier Multiplication Does Occur in PbSe Nanocrystals, Nano Lett., ASAP Article

Old NID
28897
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…