Printed Biochips Mean Cheap, Mass-Produced Peptide Arrays

Peptide arrays are powerful tools for developing new medical substances as well as for diagnosis and therapy techniques. A new production method based on laser printing will enable the potential of peptide arrays to be better utilized for more applications. Peptides are protein fragments consisting of up to 50 amino acids. Peptides with a length of 15 to 20 amino acids arranged in arrays are sufficient for drug research and for identifying pathogenic proteins but the capacity of such arrays is limited. A maximum of 10,000 peptides will fit onto a glass slide at present but biochips with 100,000 peptides are needed in order to represent each of the approximately thousand proteins in a bacterium – in the form of 100 overlapping peptides – and a staggering 500,000 are required for a malaria pathogen.

Peptide arrays are powerful tools for developing new medical substances as well as for diagnosis and therapy techniques. A new production method based on laser printing will enable the potential of peptide arrays to be better utilized for more applications.

Peptides are protein fragments consisting of up to 50 amino acids. Peptides with a length of 15 to 20 amino acids arranged in arrays are sufficient for drug research and for identifying pathogenic proteins but the capacity of such arrays is limited.

A maximum of 10,000 peptides will fit onto a glass slide at present but biochips with 100,000 peptides are needed in order to represent each of the approximately thousand proteins in a bacterium – in the form of 100 overlapping peptides – and a staggering 500,000 are required for a malaria pathogen.

Then there is the price: An individual peptide spot costs around 8 dollars, adding up to almost $80,000 dollars for a full array.

In cooperation with developers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, scientists at the German Cancer Research Center (DKFZ) in Heidelberg have found a cheap way of mass-producing peptide arrays: printed biochips. “At present, peptide arrays are manufactured by a spotting technique that uses a robot to dab the individual amino acids onto a paper-like membrane,” explains Dr. Stefan Güttler of the IPA. “Trying to do this with a laser printer is something completely new.”

The project requirements were stringent, calling for printing on glass, rather than a flexible medium, and involving the use of 20 different toners – because peptides consist of 20 different amino acids which must be linked to form specific chains. The DKFZ scientists provided the bio-toner: encapsulated amino acids. During printing, the amino acid particles are first processed in a dry state. For a chemical reaction, however, they need to be dissolved.

“We dissolve the amino acids by heating the carrier,” explains Dr. F. Ralf Bischoff of the DKFZ. The toner particles melt, enabling the amino acids to couple with the carrier. The amino acid particles are printed layer by layer on the glass slide, exactly on top of one other, and subsequently linked. Compared to the state of art, printed peptide arrays are much more complex. They contain over 155,000 micro spots on a carrier measuring 20 by 20 cm, and can be manufactured much faster at a price that is at least 100 times lower than that of conventionally produced peptide arrays. The arrays can now be offered for a few cents per peptide.

The research teams were awarded the Stifterverband Science Prize 2008 for developing this manufacturing process for highly complex biochips. The work was funded internally and by the Federal Ministry of Education and Research (BMBF) and the VW Foundation.

Old NID
29040

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…