Memory And Learning: Astrocytes And Synaptic Plasticity

By mopping up excess neurotrophic factor from neuronal synapses, astrocytes may finely tune synaptic transmission to affect processes such as learning and memory, say Bergami et al. The major cellular events of learning and memory are long-term potentiation (LTP) and long-term depression (LTD), both of which affect neurons' ability to communicate with one another. Neurons that have undergone LTP display a stronger electrical response to the same level of a stimulus, whereas neurons that have gone through LTD display a weaker response. These changes are thought to result from modifications of the neuronal synapses, such as alterations in the density of postsynaptic receptors, or downstream signaling events.

By mopping up excess neurotrophic factor from neuronal synapses, astrocytes may finely tune synaptic transmission to affect processes such as learning and memory, say Bergami et al.

The major cellular events of learning and memory are long-term potentiation (LTP) and long-term depression (LTD), both of which affect neurons' ability to communicate with one another. Neurons that have undergone LTP display a stronger electrical response to the same level of a stimulus, whereas neurons that have gone through LTD display a weaker response. These changes are thought to result from modifications of the neuronal synapses, such as alterations in the density of postsynaptic receptors, or downstream signaling events.

Secretion of the neurotrophic factor BDNF (brain-derived neurotrophic factor) has been implicated in long-term synaptic modification, and the function of BDNF on synaptic strength depends on its particular form: in its pro-BDNF form it is believed to promote LTD, and in its mature form it prompts LTP. Neurons were thought to secrete pro-BDNF, which then matured into BDNF in the synaptic space. However, a recent study suggests that only mature BDNF is secreted, pro-BDNF being processed intracellularly.

To get to the bottom of things, Bergami et al. investigated the fate of both forms after LTP induction in brain slices from the rat cortex. By fluorescent immunohistochemistry they showed that that neurons indeed secrete both mature and pro-BDNF, but that a large amount of the pro-BDNF is immediately taken up by astrocytes.

Astrocytes, previously thought to be unimportant in neuronal transmission, have recently been implicated in long-term modulation of neuronal synapses. For example, they release the neurotransmitter glutamate into the synapse prompting LTP. By specifically mopping up pro-BDNF, astrocytes seem to have another means to assist in LTP. However, while it's likely that most pro-BDNF gets degraded inside astrocytes, say the authors, some gets recycled and re-released, suggesting that astrocytes in fact fine-tune synaptic plasticity.

Old NID
33439
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…