Experience-dependent Plasticity In The Adult Brain

A new study has shown an unprecedented degree of connectivity reorganization in newly-generated hippocampal neurons in response to experience, suggesting their direct contribution to the processing of complex information in the adult brain.The hippocampus is an anatomical area of the brain classically involved in memory formation and modulation of emotional behavior. It is also one of the very few regions in the adult brain where resident neural stem cells generate new neurons life-long, thus providing the hippocampal circuitry with an almost unique renewal mechanism important for information processing and mood regulation.

A new study has shown an unprecedented degree of connectivity reorganization in newly-generated hippocampal neurons in response to experience, suggesting their direct contribution to the processing of complex information in the adult brain.

The hippocampus is an anatomical area of the brain classically involved in memory formation and modulation of emotional behavior. It is also one of the very few regions in the adult brain where resident neural stem cells generate new neurons life-long, thus providing the hippocampal circuitry with an almost unique renewal mechanism important for information processing and mood regulation.

In response to experience and voluntary exercise, the amount of new neurons that are incorporated into the hippocampus increases. Dr. Matteo Bergami from CECAD Cologne (Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases) has joined efforts with scientists from Ludwig Maximilians University Munich and the University Medical Center of Johannes Gutenberg University Mainz to investigate whether experience, rather than merely promoting neurogenesis, also modifies the connectivity of new neurons.

The scientists successfully showed that the pattern of connectivity of new neurons, namely the number and types of inputs received by each new neuron, is not prefigured in the adult brain but can be significantly altered in response to complex environmental conditions. In fact, following environmental enrichment (EE) the innervation by both local hippocampal interneurons and long distance projection cortical neurons was substantially increased. However, while the inhibitory inputs were largely transient, cortical innervation remained elevated even after ending the exposure to EE.

These findings reveal that exposure to complex environmental stimuli as well as their deprivation regulates the way new neurons become incorporated into the preexisting circuitry and thus, their engagement into hippocampal-dependent tasks and contribute to deepening our understanding of how the brain responds to experience and how external stimuli are translated into stable changes of neuronal connectivity. The results will help decipher how complex learning processes modify the brain’s plasticity, but may also create an experimental basis for investigating the maladaptive changes in brain connectivity associated with neurological and neuropsychiatric disorders such as epilepsy, depression, anxiety, and post-traumatic stress.

Old NID
153006
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…