Acoustic Diode Will Take Ultrasound Into The 21st Century

Many people know about ultrasound because of its popularity in prenatal imaging - grainy, grey outlines of babies made using reflected sound waves. A new 'acoustic diode' could dramatically improve future ultrasound images by changing the way those sound waves are transmitted.

Many people know about ultrasound because of its popularity in prenatal imaging - grainy, grey outlines of babies made using reflected sound waves. A new 'acoustic diode' could dramatically improve future ultrasound images by changing the way those sound waves are transmitted.

The theoretical framework for an acoustic diode achieves a one-way transmission of sound waves much the same as an electrical diode controls the one-way transmission of electrical impulses.

The one-way flow of sound would provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves going in two directions at the same time and interfering with each other, explained China's Nanjing University researcher Jian-chun Cheng.  "The propagation direction of the output wave would be controlled freely and precisely. These features are crucial for the medical ultrasound applications of the resulting devices." 

A schematic illustration of "acoustic diode" made of a zero refractive-index medium (ZIM) prism, which only allows the acoustic waves comes from the left ("positive incidence") to pass but blocks the waves from right ("negative incidence"). Credit: Urbana/ B. Liang

Sound waves easily flow in two directions. Yet in nature, total reflection of sound in one direction is known to occur at the air-water interface. This gave investigators the idea that an acoustical diode could be constructed by transmitting acoustic waves using an asymmetric prism to create total unidirectional reflection. 

The team developed its theoretical model based on a material not found in nature called a near-Zero Index Metamaterial (ZIM) and a prism to create high transmission efficacy acoustic waves that strike a reflective boundary from two opposite sides.

In theory, explained Cheng, "This would produce a unique tunneling effect and an unprecedented property that the output waveform is kept consistent with those of the waves traveling toward a boundary."

Citation: Xin-Ye Zou, Bin Liang, Ying Yuan, Xue-Feng Zhu and Jian-Chun Cheng, 'Controllable acoustic rectification in one-dimensional piezoelectric composite plates', J. Appl. Phys. 114, 164504 (2013); http://dx.doi.org/10.1063/1.4827200
Old NID
123668
Categories

Latest reads

Article teaser image
Donald Trump does not have the power to rescind either constitutional amendments or federal laws by mere executive order, no matter how strongly he might wish otherwise. No president of the United…
Article teaser image
The Biden administration recently issued a new report showing causal links between alcohol and cancer, and it's about time. The link has been long-known, but alcohol carcinogenic properties have been…
Article teaser image
In British Iron Age society, land was inherited through the female line and husbands moved to live with the wife’s community. Strong women like Margaret Thatcher resulted.That was inferred due to DNA…